
J

\~

NASA TECHNICAL TRANSLATION NASA TT F-14,120

ON THE OCCURRENCE OF LONGITUDINAL VORTICES IN TURBULENT

BOUNDARY LAYERS AT CONCAVE WALLS

G. Sandmayr

Translation of: "Euber das auftreten von Laengswirbe,~
in Turbulenten Grenzschichten an Konkaven Waenden",
Deutsche Luft-und Raumfahrt. DLR FB-66-4l/June 1966
49 pages.

-- ----- --

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C.. 205_~(j I FEBRUARY 1972

-Reproduced by -~-- - --- - -

NAnONAl TECHNICAL
. INFORMAnON SERVICE

U S Department of Commerce
Springfield VA 22151

Unclas
J 670~ ..--



~\

ON THE OCCURRENCE OF LONGITUDINAL VORTICES IN TURBULENT

BOUNDARY LAYERS AT CONCAVE WALLS

G. Sandmayr

ABSTRACT. The existence of periodic longitudinal
vortices in a turbulent boundary layer along a concave wall
is investigated. In addition to the velocity profile, a
profile of the eddy viscosity and the Reynolds number are
given. The eigenvalue problem is approximately solved for
neutral distu~ances and for a particular boundary layer
by Galerkin's method, described by P. S. Klebanoff. The
curve of critical curvature has a minimum for a certain wave­
length of the disturbance. Within a certain range, it hardly
changes with the Reynolds number. These results agree with
experiments by I. Tani.

1. INTRODUCTION

In order to obtain some ideas on the origin of turbulence, there has often /7

been interest in the stability of laminar boundary layers in relation to small

perturbations compatible with the hydrodynamic equations of motion. At first

there were studies of two-dimensional Tollmien-Schlichting waves propagating in

the direction of flow. They received extensive theoretical and experimental

study first in flows along plane walls and also, later, in flows along curved

walls (see, for example, [1], Chapters XVI and XVII with extensiv~ bibliogra- '

-ph~es) .j

Then, in 1940, H. Gortler introduced a relation for calculating the three­

dimensional instability of laminar incompressible boundary layer flows at con­

cave walls. It dealt with perturbations in the form of equidistant vortices

having their axes in the direction of the basic flow [2]. G. I. Taylor [3] had

previously demonstrated that similar vortices can originate in the flow between
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two coaxially rotating cylinders, if the inner cylinder rotates faster than the

outer one. The boundary layer flow mentioned above can be understood as a

Taylor flow, in which the unperturbed outward flow takes the place of the

internal rotating cylinder.

In a linearized theory, the law of vortex instability leads via the

Navier-Stokes equations and the continuity equation, with consideration of the

edge conditions for the perturbing quantities, to a three-parameter eigenvalue

problem with the number§e2,t\, which still depends on the separation of the

vortices and on a temporal regeneration factor, as the eigenvalue. Here'Bd is

a measure of the boundary layer thickness; Re is the Reynolds number generated

from[!jand the autward flow; and R is the radius of curvature of the wall near

which the flow passesllcf« 1)). As in previous stability investi·gations, here

too it is necessary to neglect changes in the basic flow and in the perturbing

elements in the flow direction in order that the calculations can be performed.

The basic flow is assumed to be steady.

For physical reasons, we are especially interested in the smallest positive

eigenvalue of the problem. With neutral flows, i.e., those in which there is

neither damping nor buildup, it forms, depending on the thickness of the vortex ~

assumed, a so-called critical curve, to which the following significance is

ascribed: If the value ~for a certain flow is below the critical value,

then every perturbation of the type assumed will be damped. If it is above the

critical value, then they can be built up, finally leading to turbulence.

The eigenvalue problem was approximately solved by H. Gortler. Following

works supplemented the theory and refined the numerical treatment [4, 5, 6].

G. Hammerlin [7] finally extended the stability investigations to laminar boun­

dary layers in compressible media at different wall temperature relationships.

In this work we shall investigate the occurrence of longitudinal vortices

in turbulent boundary layers. That is, if we consider turbulent flows which
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(2.1)

may be divided into a time-averaged steady portion and n~nsteady_lfluctuations,

then the boundary layer theory can be applied to the time-average, with appro­

priate additional assumptions. Thus~it is obvious to ask whether longitudinal

vortices can also be produced at concave walls by the interaction of centrifugal

force, pressure, and viscosity forces.

Actually, I. Tani [21] in the experimental study of turbulent boundary

layers at concave walls has established periodic fluctuations of the lines of

constant velocity, which can be explained as resulting from the occurrence of

longitudinal vortices. We shall compare the values obtained theoretically

with the experimental results~

I thank Prof. Dr. H. Gortler for providing the impetus for this work. I

would also like to thank Prof. Dr. E. Becker and especially Lecturer Dr. G.

Hammerlin for their active interest in the performance of this work, and for

many valuable suggestions.

2. THE BASIC EQUATIONS OF TURBULENT FLOW

The~~nst~adyJflow of an incompressible viscous fluid is described by the

Navier-Stokes equations (see [8], Chapter IV, 2; or [1], Chapter III f)

jf%i!. - grad p + di;YJ
and by the continuity equation

Idivfl. 01 (2.2)

Here ~ is the velocity vector of the flowing medium with components u, v, w

in the directions of the orthogonal coordinates x, y, z; P is the pressure, ~

the density, and~]the tensor of the friction stresses. ~ = ~(x,y,z) is the

dynamic viscosity depending on the location. By div ~we mean the vector of

divergence of the row vector ofll]. DIDt symbolizes the hydrodynamic derivation ..

with respect to time.
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(2.3)

From (2.1), and considering (2.2), we obtain for an arbitrary orthogonal

system the equations of motion

~d~--':~~~..,+ ~ad (fl2>1 .>.,,&<1 p ]

1_ ;~~~(~~t U)-:-~-:~; )( ~~~-~ :-2 {_(~ad_~_2~rad };4 1>\

or, in case ~ = constant,

Iff~ -U1 x ro,1f + i ~ad--(;'-2)}j

~l .. - grad p - ~ rot (rot-~ r'-:J (2.4)

\
\

To this we add the problem of the appropriate edge conditions.

In turbulent flow, the main movement has superimposed upon it an irregular /10

fluctuating movement, so that the velocity and pressure are not constant at a

fixed point in space. To represent the flow it is expedient to divide the

instantaneous flow, according to O. Reynolds [9], into a time-steady portion

averaged over a long period, and a~~on~t-~dY]fluctuation. The fluctuation

superimposed upon the main flow is so complex in detail that its theoretical

calculation seems beyond hope. We shall limit ourselves to considering its

effect on the average motion. That is, the mixed motion which it causes acts

as if the viscosity were apparently very greatly increased.

If we designate the time-average values ~f the flow quantities as u, v,

w, p, and the instantaneous deviations from th'~ as u', v', w', and p', then

for the actual velocities and pressure we have

~4'I + !1- ~Jand r--p-.-'=p-+-p-,-----,.\

(l)The fact that the last summand is also independent of the coordinate
system appears from the identity:

f2 {(grad ~) grad}tI • - rot (grad~Xtl) + grad ~ div ""

:-11 div (grad ~.> + grad {(grad ~ )141) - gradJ! x ret 1.D

; - 11 X ro t (grad J! )
L__ _ ------ ~---
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r(x,y,z,t) dt,

As usual, the time-average is defined by

t +"Co

f(x,y,z) ..L J
2't t-'t

",,-~.~ ..-"'o,----,'~~ -,

in which the time interval (1'1-) is chosen so large that f becomes independent
r

of to and T. Further, the temporal limits should not depend on the location.

Then differentiation and averaging are interchangeable.

We introduce the expansion of ~ and p into the equations of motion (2.4)

and the continuity equation (2.2) and form the time average value by terms.

Then all the linear expressions in the fluctuation magnitudes drop out, and we

obtain

• - grad p

(2.5)

(2.6)

Because ~iv". div V .. lSi• .,'. 0 wul dh..,. 01 it also follows that divJ~= O. /11

If we subtract the term Ii tI' d1Y"'. 01 from the right side of Equation (2.5),

all the expressions which affect the turbulent fluctuation motions can be com­

bined into a vector, divr!1 whereLEJis the synunetrical matrix

U· 2 U'yl -\ltv'
'J' • f -• \lty' v,2 -y'v'

u'v' - v,2y'v'

As we can see from comparison of Equation (2.5) with the Navier-Stokes equations

(2.4)) or (2.1) ,:i,.n the equation of motion for the time average we have. added to

the stress tensor of laminar friction, here deSignated~, one more stress
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tensor ~, the tensor of turbulent apparent viscosity. It was derived first

by o. Reynolds [9] from the hydrodynamic equations of motion.

Edge conditions: All the components of \1iJ and ~ vanish at solid walls.

The fluctuation components are also very small near the wall. From this it

follows that all the components of the tensor of turbulent appar~t friction

ili~ewise vanish at solid walls, so that only the viscous stresses of laminar

, flow remain.

Calculation of the average motion from Equation (2.5) is possible only if

the apparent stress of turbulent flow can be expressed by the values of the

average motion, so that the differential equations contain only the average

velocities and the average pressure. To achieve this, we assuwe, following
"

I. Boussinesq [10] (cf. [11], page 124) that the ,mixed motion is simply equi­

valent to an enlargement of the viscosity effect, setting

The quantity';f~A which expresses the intensity of the mixed movement, corresponds

to the viscosity parameter l.l of the Stokes friction law. But the "apparent" 112

kinematic viscosity E is numerically much larger than the corresponding value

v of the laminar flow. We no longer are dealing with a material parameter.

Instead, £ varies from case to case. In general, it depends on the spatial

coordinates. In the individual case, it can only be decided experimentally how

large the turbulent viscosity must actually be chosen.

In the case of] simple, plane shear flow u = ~(y), v w = 0, with d~/dy

> 0, which we shall take up later, we obtain approximate values due to the

following considerations: Of the components of the tensor~, there remains

only the supplementary turbulent thrust stress

, 6

i~ t.
:7l:Tl _
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With this flow, the time average of the velocity fluctuations u'v' can be

measured for any distance from the wall (see section 5); or, by means of various

empirical laws, iLcan be-linked -with uCy) (e. g-. ,the Prandtl mixing method

formula, the von Karman similarity hypothesisE] see [1], Chapter XIX). At any

time, the apparent turbulent viscosity -c~n b~-~~i~;-d--~~u~uf1.mction-~£I'

the wall distance from

For the total thrust stress of the flow, we can write

Ii .rr ,Ii -,
in which the "effective" viscosity ]leff is given by

,'v'
dU./q' (2.7)

(see [8], Chapter V, 9).

In the general case, too, we can formally combine the laminar viscosity ]l

and the turbulent apparent viscoSity~into a quantity ]leff and say: Boundary /13

layer theory can be applied to the time-averaged value of the turbulent flow,

if we take the fluctuation motions into account in the calculation by replacing

the molecular viscosity by the much greater effective viscosity.

Corresponding to (2.3), then, the equations of motion for the average

motion are

(2.8)

,..-..;----.-----------

-sra4 P - Jl.rr.ro\ (rotii) + sra4 Ii.rt X rot 1i

+ 2 (sra4 Ii.n ) gra4) 1;. ,

. -
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Because we are dealing here with a steady flow with!lI.q] (x,y,z), ~;r] = O.

We shall keep the expression now so that we can later superimpose on it the

non-steady perturbations.

3. THE COORDINATE SYSTEM

The following considerations are based on a coordinate system already

used by G. Hammerlin [7]. It is better suited to the flow conditions than the

cylindrical coordinate system previously used in instability demonstrations

of laminar flows. The usual approximations undertaken there in the boundary

layer and extended to the exterior flow correspond to transition to a coordinate

system in which the wall and~JTIthe coordinate lines ( = flow lines) have the

same constant curvature. In order to avoid error with this model, vortices of

great thickness, which extend beyond the boundary layer, must be treated sep­

arately.

In the new system, we hypothesize that the segment of wall over which the

flow passes, with constant radius of curvature RO' is in the neighborhood of

the valley of a wavy wall. The coordinate origin is placed at the point of

the valley. We keep the assumption that the basic flow does not depend on the

wall arc length. In this way, the amplitudes of the perturbing functions can

later be taken as functions of the distance from the wall alone. Then the

stability study leads to an eigenvalue problem in a system of o,rdinary differ- /14

ential equations.

As H. Gortlbr [12] has shown in an investigation of the laminar boundary

layer at a wavy wall, the radius of curvature of the flow lines for x = 0/ 'j

increases exponentially with increasing distance from the wall. In the

vicinity of this line, therefore, it is reasonable to insert for the radius

of curvature R(y) = ROekY , where y designates the perpendicular distance from

the wall and the parameter k is still assumed to be given. Now we choose a

family of coordinate lines of our system, so that it coincides with these

-flow lines.
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If we designate the Cartesian coor­

dinates as ~, n, s, and those of the

new orthogonal system as x, y, z, then we

obtain the following relation (see

Appendix 1, page ~j) :

,.
~ .

- f
kRo kR(Y)

x e e

Figure 1. The coordinate system. In the line element ds 2

222
dy + h

3
dz ,

, • Q....
dy

4. DERIVATION OF THE PERTURBATION DIFFERENTIAL EQUATIONS

In the coordinate form, the equations of motion (2.8) for turbulent flow

(2.8) and the continuity equation (2.6) are

I (V:, +i~ ;;X + ; ;" + ;;•• i;- ;; ). -i; 'X';AO
-'., .;" >;?~,. ' ":'i>~~: :'.

+*." t an + ... + <:,'),Jt~~ +~ Yz· t-~~~ t-;o )
/fd(ft:,;,y 1 1 . Il, . '~(.!!/':b 1

+ h'2'l"ett)x { ;x + h,'; l + ( 'ett)" ( ~ - :~. ; + ~;x }
1

+ Cliett). { u. - 1- ;x},

9
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h t

e(i, + ~ UTZ + T T7 + ;;.-~ U2 I · - '7

+ (1 - - ~- L- -)"ert h
1

2 • U + v•• - ..,2 1lx - h1 u.z;r - v7•
." .

+~ (l1.rr)x I t;yx - ~: U+ U7 ) + 2( ....tt)7 T1

+ (II err)s ( T. +;,) --~.,..,-----

- o.
h,' _ _

Ux + ---h v + v + v
1 1 z

I) { ';. + -h' U'; +; '; + ';;; } • - P + Ii It {..1-2 ; +;;
J .. , x 1 • a r... h xx 11

... 1

h ' h t1 - , - 1-+-w --u ·--Y
h, 1 h1 ax h, •

(4.1.2)

(4.1.1)

+ af1r U - iGr ;1} + (l1.rr)7 ( U7 + aGJ U) + (l1err>a7z

ify, + ;V7 + ;Vz +t'G1 u ). - P1 + l1.rr (;11 +;IIZ

As we assume that changes of flow in the x-direction can be neglected, all

derivatives with respect to x vanish from the equations. Now if we insert /16

i~" :--.:-~ and (~)' • k and transform the coefficients of "eff in the
Lb~.~ h, R y

second and third equation of motion by means of the continuity equation, we

obtain the differential equation system

e(u, + Yu1 - Bl,) UT + ; u. J. l1.tt { un + un

(4.1.3)
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(4.1.4)

As the basic flow, we choose a motion which is turbulent in the boundary layer,

with a steady mean ~lue which is a,~'.umed to depend only on the distance y from

the wall. Let the time averages of the components uo(y) , Vo = ~o = 0, PO(y) and

. ~eff(Y) be solutions of system (4.1).

So as to be able later to demonstrate the instability of this flow with

respect to longitudinal vortices, we shall first derive the differential equa­

tions for small perturbations, which we superimpose on the basic flow in the

following form:

u • uo(y) + u'(y,z,t)
*v • v (y,z,t)
*v • v ("a,t)

p • po(') + p*(y,z,t)

11 err • f 11 .rr(y) .

In this first approximation we do not consider perturbations of the turbulent

viscosity ~eff(Y)' which can itself be calculated from averages of the fluc- /17

tuation velocities.

Because of the assumption of small perturbations, we may linearize with

respect to the starred values. The statement then leads to the differential

equations
•+ u•• ~ *+ u

'. 7
(4.2.1)

k *
+~v

~\lJ

(4.2.2)
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* * * *--1-- ---- .-
.. tIt • -,~_. + Il.tt (vn + v.. -litiJ v7 J

+ (ll.tt)7 ( ..; + v7*)
(4.2.3)

• (4.2.4)

We add the conditions for adhesion to the, wall and for decay of the perturbations

for y + 00:

\ u*(o,lI,t) • Y*{O,z.t) • v· (O,_,t) • 0 )

and
li.y-- •u ll'.z.t) • 11a

y_ ..
*Y ll', z. t) • 11.1'-- w l1' •• , t) • 0 •

•

.J

As can be shown later by means of the exact solution in the external region,

*the relation lim p (y,z,t) = 0 is also valid.
y+oo

The assumption that y « R(y) is justified for all values of y if we

consider that R
O

» 0 (0 = boundary layer thickness) and if we accept the

experimental value k = 1/20(2) as the average value at a wavy wall. Then we

have

1-(tJ>- Ko ·",,~.'f,·o( 1 + h + ••• »>. 7 ./

FOll~in*g_t_he deliberations in [2] and [4], becauseml.t~l<ctuliJand
~, we neglect the terms on :he left in these approximations

because they are related to each other as y/R(y) to 1. Further, it is true

that~ 'li.~Ic< I Un*,ll. We proceed correspondingly for the other two velocity

components.

(2)The value k 0 = 1/2 was previously used by G. Hammer1in in the numerical
calculations. It is taken from a work by H. Witting [13], in which the forma­
tion of vortices was investigated in the boundary layer along a wavy wall.
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• • 'tu (7,a,t) • u1(7) 008 • a
• e ~t'Y ("a,t) • 'Y1(7) co•• a
• sin Cl z e ptv.,1',a,t) • V 1(7)

P (7,a,t) • P1(7) C08 C z e 't ,

In (4.2.1) we may also neglect ~O/R(Y) in relation to d~O/dY. The esti­

mate is justified within-j the boundary layer. In the laminar external flow,

we have

-_ duo u
I rot ... 0 I • I -CiT' + 'i'tir I·e •

Now we consider special perturbations of the Taylor-Gortler vortex type,

and set

in which a.

constant.

2Tr/t.., t.. wavelength of the perturbation, and S = damping function

Thus (with the primes indicating derivatives with respect to the argument

y) syst~m (4.2) transforms into

9('·1 +R'GJ \10 u1)·· P1' + l&.r£(-.2 v1 + v,")

+ 2 1&' err v1 '

I v1 ' +« v, • 0 • I

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

In treating this system, we shall first replace wI by vI' according to

(4.3.4). It would also be possible to eliminate Pl(y), but then the second

derivative of the turbulent viscosity ~eff(Y) would appear. As we shall see
IJ>:

in Section 5, this profile cannot be given with sufficient accuracy. Thus we

retain PI for the numerical calculations.
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Now we introduce dimensionless quantities by

""1 M- Ii .rr
0" _ .0""--u. _Ii.

'Y1
_ u.

o • k 6'Y -- R. u-- V"". u..
P1 2 B _ 0 20 @ y dP ---,Re

Ii. 11 -T' - dllu.

s - 2 R.2 0 .it
fU.6

Re--a; Ii.

Here u designates the velocity and ~ the viscosity of the laminar external
00 00

flow. Re is the Reynolds number formed with the external flow and the boundary

layer thickness. Also, from the definition of ~eff in (2.7) it is true that

IL .rrM --~;;.

Ii.
.1- u','

~_= 1 + R. -("4) •
dU/dll

if U', V' are fluctuation velocities of U(n) and m(n) is a profile of the

dimensionless kinematic viscosity, to be determined experimentally.

The value y = kG = 1/2 is to be used in the numerical calculations. It

*matches the real conditions at a wavy wall .

Now, the differential equations of the perturbing quantities u, v, p have

the form

1M (u." - 0"2u ) +M'u.' -Bu - v ii' .,01 (4.4.1)

[
2 -VII

M(v" -0" v) + 2M'v' - Bv - S e u u - p' .. ~ I
(4.4.2)

14

*Translators Note: See footnote on page 12.
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The edge conditions transform to

/-.. • v - Vi • 0 I~ ~ ,. 0 §i4) 1\-. \ and pC -) = 0 ./

In the particularly important case of neutral perturbations, i.e., those

which are neither built up nor damped, because B = 0, the system simplifies to

IMCu" - cr2u) + M lUi - V UI- 01

1M (v" - (J 2v ) + 2 M I V I - S e-Y 1\ IT u - pl. 0]

(4.5.1)

(4.5.2)

(4.5.3)

u = v = Vi = 0 for n = 0 and n + 00

or, if we neglect the difficulties in calculation of Mil and insert p from

(4.5.3) into (4.5.2), to

1M (u" - CJ 2u ) + M IU I - V U I •• 0 I

I IV 2" 4M (v - 2 cr v + (f v) + 2 M

(4.6.1)

(4.6.2)

with the parameters Re, cr and a/ROo We

(Gertler parameter) as the eigenvalue.

Thus the rule for vortex-like perturbations leads to an eigenvalue problem
. 2

can consider the number S = 2 Re afRO

But, differing from previous studies

with laminar flows, here the Reynolds number is already established by the

choice of a particular viscosity profile.

The calculations which now follow to determine the smallest positive

eigenvalue of the differential equation system (4.5) are to demonstrate

the occurrence of longitudinal vortices at a concavely curved wall with

15



turbulent basic flow, and to pr~vide, at least within an order of magnitude,

information on the curvature at which a vortex of given wavelength can just be

maintained, without-decaying. -For a fixed Reynolds number,-then, the curve

of critical curvature S or a/RO can be calculated as a function of cr. Finally,

we shall determine the effect of a change in the Reynolds number on these

figures.

5. THE TURBULENT BASIC FLOW

Before we can apply ourselves to the solution proper of the eigenvalue

problem, we must obtain a profile U(n) for the time average velocity of turbu­

lent basic flow along a weakly curved wall. The basic profile used in the,

following is taken from a work by P. S. K1ebanoff ([18], Figure 3), in which

he reports the results of measurements with longitudinal flow along a flat

plate with zero pressure gradient. (The J yno1ds number of the flow at the

measuring point is given as :: x .. ·4.~ . 1-~? or~~~).

Because the curvature is weak, the flat plate is a usable approximation. In

the .workcited, we also find information on the distribution of the turbulent

fluctuation velocities in the boundary layer. We will use them to derive a

basic viscosity profile.

In relation to the numerical solution of the differential equation system,

it was expedient to approximate the basic profile and its derivatives by poly­

nomials. In order to cover the course of the curves well, we have divided them

at appropriately selected points and defined the approximation polynomial in

each of the intervals thus produced in such a way that the values of the func­

tions and of the first derivatives agree at the junction points. By prescribing

other functional values and derivative values at various supporting points

within the intervals, we could in general achieve agreement between the curves

prescribed graphically and the approximate curves described by the polynomials,

within the presently possible accuracy of drawing. The approximating poly­

nomials are listed separately in Appendix 2 (page 301).
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Figure 2 shows the distribution of the average velocity U(n) in the

boundary layer, according to p.. S. Klebanoff, and the derivative of the velo..­

city profile. The curve near the wall is plotted separately. As we can see
-- ----.- ---~- - _. -

from the diagram, the velocity profile of the turbulent boundary layer is

characterized by a steep rise at the wall and a rather even course in the rest

of the region. The derivative U'(n) was obtained by graphical differentiation

of the basic profile.

Figure 3 shows the curve which Klebanoff ([18], Figure 5) called /22l::; · .( ~ )l(u', v' f1uet uation velacities) • it des eribes the eourse a f the

entire thrust stress I-=I=;\ of turbulent flow.
~.

GW
.t-+-----+---=_--I~-t

Figure 2

o'"-------...------..;;:~~

Figure 3

At the measuring point nearest the wall (n

reached two percent of the total value.

0.035) the frictional stress

\ u'v' /u. 2
( ) U'V'

The desired profile m '1 • dU/d 11 dU/d.'! ' which denotes the

dimensionless turbulent apparent viscosity, was calculated point by point from

the quotients of the approximation polynomial for the turbulent thrust stress /23

s(n) and for the derivative of the basic profile. It is plotted with respect

to n in Figure 4.
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inar underlayer and on transition in­

to the external flow. The points of

inflection, which must occur in the'

given intervals, could not be deter­

mined exactly. Thus the approxima­

tion of m(n) in the boundary regions

is quite inexact. For the approxi-

mation of m'(n), essentially the /24

derivatives of the approximation

polynomial for m(n) were used.

m"(n) can no longer be stated with

reasonable accuracy.

H-.....-----1--......l~--_;t__11.

'" 5,
.,':~

0

The curve was modified slightly

in the intervals 0 ~ n~ 0.1 and

.0. 9 ~n ~ I, so -that the boundary

ZlAIJIi.'+---:l~--~r-----.....,t--t11 conditions m(O) = m' (0) = 0 and

m(l) = m'(l) = 0 are fulfilled. They

correspond to the disappearance of

the 'additional viscosity in the lam-

l l------+----:::~--+-t-"1. 5

, _-.-=------.--:u=--------',,'-----'

Figure 4. The dimensionless turbu­
lent apparent viscosity and its
derivative.

6'. SOLUTION METHODS

In the case where M'.';: 1, we have

from (4.6), except for the factor e-yn at S, the perturbation differential

equations for a laminar incompressible boundary layer flow which have been

treated often already. In [2] and [4} this system of differential equations

is coaverted by means of Green functions into a system of integral equations.

'The principle of Jentzsch (see [4}, page 290) then guarantees the existence

of a simple, positive smallest eigenvalue with its eigenfunctions, which can be .

obtained by aniteration:j procedure given by H. Wielandt.

-----------_J,
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Because M = M(n), and in the case of a turbulent boundary layer, this

method corresponds to the transition from a differential equation system (4.5)

to a system of integral and -differential- equations ,--with- the -added difficulty

that derivatives of unknown quantities still occur in the integrands. The

numerical effort is considerably greater here than in laminar boundary layers.

Because of the unfavorable form of the coefficientsl, the use of difference

methods for numerical determination of the eigensolutions of the differential

'equation system involves great difficulties.

But, on the other hand, the differential equation system can be handled

by means of approximation me thods. R. C. di Prima [14, 15] and A. M. O. Smith

[6] use the_method of Galerkin [16, 17] in particular to determine the eigen­

values and eigenfunctions of similar systems of differential equations in hydro­

dynamic stability investigations. As this method has proved very effective in

many cases, and because it is relatively simple to apply, we use it to derive

a first approximate solution.

The method of Galerkin is described extensively in Appendix 3, so that

we can limit ourselves to a brief explanation here. We start with the eigen- /25

value problem (4.5). In place of the dependent variables u, v, p, approximate

solutions u, V, p are introduced into the differential equations. Here we are

dealing with a linear combination of each of q linear independent functions,
J

each of which fulfills its boundary conditions in detail. The Galerkin method

consists only in determining the 3q constants of the starting set, so that now

the expressions on the left side of (4.5) are orthogonal to certain starting

functions in the integration interval (0,00). To be sure, if the first expres­

sion is orthogonalized to all the star~ing functions for u, the second and

third are correspondingly orthogonalized to those for v and p. Thus we obtain

a system of 3q linear homogeneous equations. This can be written in matrix

notation as K(l + S~) 0 • 01. I«J and ~ are square matrices of 3qcolumns, and

c is the column vector of the unknown constants. By means of the iteration
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method, we calculate the smallest positive eigenvalue 8
1
a~ its constants from

the linear equation system. 8
1

, and the functions U, v,·p represent approxi­

mations to the smallest positive-eigenvalue of· (4.5)· and its eigenfunctions.

The accuracy with which the eigens-oiuti~tl-s·1 of the differential equation

system are approximated by the linear equation system depends essentially on

the prescription of suitable starting functions. It can be improved further

if the number of starting functions is increased, but this also increases the

cost of the work and the errors in the numerical computation. The following

considerations were decisive for the selection of the starting functions:

Because U(n) - 1 and M(n) - 1, in the region n > 1, differential equations

(4.5) simplify to

u.. _,.2u • 0 u(_ ) • 0

2 - pt _ s -V'l
0 y(-) • 0yll - ,. y e u·

ylli. f2yt _ cr2p • 0 yt(.) • 0

with the solutions (d.
1.

constant; i = 1, 2, 3)

(6.1.1)

(6.1.2)

(6.1.3)

Thus as n -+ 00 all the eigenfunctions approach zero at least as rapidly asl

e-crn or ne-crn From (6.1.1) and the boundary condition u(O) = 0, it also

follows that the continuous differentiable function u(n) has at least one

extreme in the interval 0 < n < 1 and that the sign does not change for n > 1.

Also, v(n) has at least one extreme in the interval 0 < n < 00

20



-n n -rnFunctions of the form hen) = (1 - e ) e with integral non-negative n

and r show a similar course. As all the boundary conditions of (4.5) are also

satisfied with satisfactory choice of theexpon~nts, we can use linear combin­

ations of such functions as approximate solutions.

7. RESULTS

First, approximate values S for the smallest eigenvalue of (4.5) were

calculated by the method described in Section 6 and Appendix 4, with various

combinations of two to ten starting functions each. With the parameter values

cr = 1 and Re = 7'10
4

maintained, the following results were obtained:

Depending on the comb~nation of the starting functions used for the

approximation, the eigenvalues and eigenfunctions varied for the same number

q of starting functions. For q - 3 the eigenvalues are approximately in the
5 A 6 I

range 7.5·10 .::. S .::. 2.3·10 Wi th q = 4, the range of variation is someJwhat

smaller, and the eigenvalues lie within the limits 7.105 .< 5 < 1.5.106 . The

differences, which are in part considerable, can be explained thus:

In the computation of the elements of the matrices ~and~, there

appear as integrands products of coefficient functions of the differential

equation system with starting functions and their derivatives. As the coeffic­

ient functions U'(n), M(n) and M'(n) have distinct extremes in the interval

[0, 1], the course of the integrand functions, and thus the value of the

integrals, is strongly affected by the choice of the starting functions. But

changes in the magnitude and signs of the matrix elements cause shifts in the /27

eigenv~lues.

If we add more starting functions· to an already existing combination, we

can observe no convergence of the solutions toward a difinite value. Rather,

the eigenvalues with these approximations generally become somewhat smaller,

while the eigenfunctions usually show greater fluctuations. Here it must



A

used to compute the balue S. These

of the problem become significant. They

can to some extent considerably falsify

the rssult. As we can in any case except

only an order-of-magnitude view of the

solutions, we shall in the following be

satisfied with a ~small number of starting

functions.

certainly be considered that, with six

or more starting functions, the errors

which occur in the numerical treatment

Our next objective is to investigate

the dependence of the parameter S on the·

wavelength a of the prescribed perturba­

tion. Three different typical approxima­

tions to the curve of critical curvature

are plotted in Figure 5. Combinations of

three to five starting functions were

•2,
Apprgximations__~Qr__the

the parameterr a 2 R~]

1t-+--t.l""---+------i

o

Figure 5.
curve of

closely approximate the appropriate eigenfunctions in the vicinity of the point

a = L Individually, they are (see Appendix 4 for the notations):
(a)

~" .. (1~"""1). G~1J, ~'2 '" (1_0-1)2 0 ..1), Un '" {1-e-71 )3 0-2."

;21 co (1~o"1J )2 a..21J , ;22 '" (1 ..e-~)4 8-21) , ;23 .. (1_e-71)6 o..31J
, .

(b)
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(c)

like (b) with k = 1, 2, 3, 4, 5.

By means of the example solutions plotted in Figure 5, we can clarify

the differences which can occur among the approximate values S found for a

prescribed wave length 0. But it is a: common characteristic of all of the

curves 8(0) that they show a minimum for a definite 0, rising steeply for
,

larger and smaller values of the parameter. We may assume that the exact

solution also behaves in this way, and that there is a smallest critical curvat

ture for a prescribed turbulent boundary layer flow. To be sure, we cannot
I

make any exact statements on the position and value of the minimum on the basi~

of the approximations we have.

Figure 6 shows the curves for the eigenfunctions u(n) and v(n), which /29

appear in the computation of S by means of the starting functions (a) and (b)

for the parameter values 0 = 1 and Re-= 7 • 104 • In each case, Max u(n) =-1

and Max ;(n) I = 1 were chosen for normalization. The eigenfunctions hardlYI

change as long as 0 is in the interval [0, 1;2].

Figure 6. Approximations for the eigenfunctions
u(n) and v(n).

-1t--.....::l-f---~1__----1

'I

(til

zo

/ (el

... •,.'11
•• 1

1

1t--::lI""-lIIrI----+---~

-
~I

3
In order to compare the curves of critical curvature at different

Reyno_~ds _~~b_ers_~__w:~ _!e~~~a~l_'!~~~ti ties to th=-d~s!,~ac~~-=~~_t~~_~~ness 8*

~.
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or to the pulse loss thickness ~ ; both are physically reasonable measures

of the boundary layer thickness.

1

6* -6 f [1 - U(1) )]d1) ,
o

-,
I and the pulse loss thickness by

1

~. 6 J U(11) [1 - U(11 )]d1) •
o

I For the basic profile from Section 5, we calculate Ib* .. 0,1334 '6\ and

I~ - 0,099561. From this we innnediately obtain 16* • 1.342 -~.,l or ~-O,74b-6-*]. I

The Reynolds number formed with the displacement thickness is designated as

Re*, and the value referred to the pulse loss thickness as ~. Analogously,

* *2' - G 2 " Ifor the Gortler parameter, '" :: He ~: and [~ • 2 He~ R;.

J. Nikuradse ([19]; cf. [1], page 5~) has shown that affine velocity /30

profiles appear with turbulent plate flow in the range of Reynolds numbers

\1,1.10~. RexSr18.10bJ(x~= path distance) if ~i~ plotted vs. r~+ If

the path length x is replaced by the boundary layer thickness by means of the

conversion formula given in ([1], page 475])

-,

I then this applies correspondingly for the parameter value ~-104~ Re ~.2,~

~~ 1~-105J and, according to the relation

:1 -- -- --.-- -0,~'9
6 • (x) • 0,1138 (Re ) x

:It

---~- ------~--------------------

-,

3



found in [19], for the Reynolds numbers 14 . 10's Be· s ,.~. As J. Nikuradse

([20]; see [1], page i~) has also established in the study of turbulent tube

flow, the dimensionless kinematic apparent viscosity plotted vs. the dimension~

less wall distance very rapidly approaches a limiting curve with increasing

Reynolds number. That is, with sufficiently large Reynolds number (~ 105)

I the turbulence mechanism no longer changes, and the turbulence is "saturated".

I

We assume that in turbulent boundary layer flow also the apparent kine-

matic viscosity m(n) does not change significantly with the Reynolds number.

Then if we vary the Reynolds number within the range as delimited above and

refer the results to~, we can use the profiles of U(n) and m(n) given in

Section 5 to study the dependence of the curve of critical curvature on the

Reynolds number.

*Figure 7 shows the curve of the critical Gortler parameter S

*for different values of the parameter Re. The starting functions

were used for approximation. As was to be expected, the curves of

vs. [~6*1

(a) and (b)

@*]

as the result of a system of longitudinal vortices.

constant velocity have periodic fluctuations in the z-direction.

are shifted as a whole upward with increasing Reynolds number, while the

abscissa of the minimum hardly changes.

~
If we plot instead the critical curvature~ formed from the displace- /31

ment thickness at various Reynolds numbers vs.~, then it appears, as can be

seen in Figure 8, that the curves differ only slightly from each other. To

I be sure, they are lower the larger the Reynolds number.

Finally, let us make a comparison with experimental results. I. Tani

[21] has made velocity measurements in laminar and turbulent boundary layers

: along a concavely curved wall. In every case, he found that the lines of

The amplitude
...; I I j

of these fluctuations becomes greater with increasing path length of the flow,_
~, ~

_~~~~~ _the ~~vel~?g~h hardly changes. These fluctuations could_bi:!__ exp_~a!p-e~ _
3
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o

Figure 7. Curve of the critical Gortler parameter
at various Reynolds numbers.

In the laminar case, the res\lltJ:l

of I. Tani agree well with the values

calculated in [2], [4], and [6]. But

because he knew of no theoretical or

experimental studies on whether longi­

tudinal vortices could occur at concave

walls even in turbulent boundary layers,

he set up the following deliberations

to find comparison values:

In laminar flows, the perturb­

ations build up even at relatively

small Reynolds numbers [6]; but certain

turbulent flows behave like laminar

ones [22] at a low Reynolds number
l:,

which one can obtain-b~replacing-the 3

kinematic viscosity v by the turbulent
1:.

-',

1

21---....

Sl+f+-+--+---"t--

7 'Figure 8. Curves of critical curva­
ture for different Reynolds numbers.

----~-~----_._~~



/33
43, and the parameter for the turbulent 1---

---------------------- ---- - ------ - - _.._-- ----_. -_._--------~-----------...• _-'
i

2 i viscosity vT• Furthermore, the studies in [2] and [4] have shown that a small

_~ i change in the velocity profile has little effect on the curve of the Gortler

parameter produced with the pulse loss thickness.

r
-' ,

From this I. Tani concludes that the stability diagram given by A. M. O.

Smith [6], which shows the parameter[e. 4 vtJ as a function of@, also

applies for concavely curved boundary layers if v is merely replaced by vT.
I

Following F. H. Clauser [22] he used fdr this the approximation which is valid,

for the outer 80 - 90% of the boundary layer, O,01ti u6*. Then if he

, assumes, following [22], that~ 1,5 ~J, the Ids number in G can be

1
replaced by the number 0.018. 1.3 =

boundary layer isleT • 43 V!'J.
The Clauser approximationlrY-T--·-O-'-0-1-a--u--a*/ corresponds approximately to

the maximum value of the effective viscosity calculated in Section 5. That is;

if in

6 ~+ m(11 ) . - a.
6*-----

"J

with

we neglect the contribution from laminar viscosity, then we have

t Hax ~.r-r(-"'->::-0-'0.-0-2-5-.-7-'-5-u-.-a-·-.-0-,0-1-e-e u a*]
OS'llS51 . -

--------------- ..

The solutions of (4.5) can better be compared with the critical curve of

". A. M. O. Smith if " in G is replaced by an average value for the effective

:3 -viscosity.-As-thi-average value of m(l1) we find; = 0.0016. As above, with

27
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:this
.'.2.

:eter

we obtain the mean effective viscositY~;!r =
G corresponds to the value1 Gy • 62 If-t;].

0,016 u ..~J Then the param-

Figure 9 showstheneutraf c~rverf)Of A.--M-:---6:--Smith [6] for laminar

iflows as well as the newly calculated critical curve for the incompressible

Icase from G. Hammerlin [7]. Curves (3) and (4) were obtained as approximate
I :.'
,solutions with turbulent basic flow with the starting functions (a) and (b) for!

Ithe parameter valuere _-__1_ •_~~_(Re~_. 9,3 . 10}, Re~ __• _1. 103] • They are plotte~

:as[ (It ~ , 43 Vend ~-t-~ diagrams.

I

The results of T. Tani's measurements at concavely curved walls with radii[

:of curvature R', = 5 m and R· = 10 m are also plotted in Figure 9. With the I
! 0 0

radius of curvature of 5 m, a wavelength of about 6.5 cm was observed, and thus i

the wave number a = 1. With R = 10 m, it was estimated that a = 2.
o

For the log-log plot used in Figure 9, the measurements for vort.j.~~_s__ of /34

cons.t~nt wavelength lie on straight lines because of the identity P3 v':J
,l- ,,4~ As the wavelength of the vortex hardly depends on the incident
I ClR
flow v locity, these straight lines almost coincide at the same radii of

curvature.

As was to be expected, the experimental values are significantly higher

than the theoretically calculated curves of critical curvature. Here we must

:consider that T. Tani found a built-up vortex, while the theoretical consider­
i

lations are based on.neutral perturbations.

I
;Al. The Coordinate System
I
I

The basic quantities of the orthogonal coordinate system introduced in

~!Section 3 arise from the following deliberations:
~~. ~

)

:28

constant are described by



u I I R.· liei-'''----r_w

!A!lm "I
1,0 t---t7-°:=S----,zo,::-=,-,-1!----+--+--%JolfF:-........I'---l

'ttl) 11 .

-,- i

(Al.l)

[[2 + [~ _ fIi(Y) + Y Jt . R(y)2j
~.' - - .

The differential equation for

this family of curves is

(A1.2)

Figure 9. Comparison of the measurements of
I. Tani with the theoretically calculated
critical curves: (1) A. M. o. Smith [6];
(2) G. Hammerlin [7]. Curves (3) and (4)
were calculated with approximations (a)
and (b).

In order to eliminate the

parameter y, we solve (Al.l)

for fl:

In the vicinity of the fl-axis,

that,

The differential equation

of the orthogonal family with

the parameter x = constant now

appears from (Al.2) to be

IK(x) ~ • ek i{ ~») 1and its general solution is. ~ j

29
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To determine K(x) we now set n = 0, thus obtaining K(x)i • eO. On

the other hand, 1%( i>1 is calculated as the arc length at the wall (y = 0) from

giving ..
f R ..

x( i )=/ or f 2 dt • Ro arc sin; •
o Ro ... t 0

Now it is approximately tr,ue that {- •. Bini;;. X.' if ouly \ ::_~ <~;] ,so

that we obtain ~1 -0 •
JC(x) • x.

Thus we obtain

..
""-7..
t - • ·

A2. Approximation Polynomial

a) Basic velocity profile

For!O S "I ,. 0,02 "\

30

For 10,02 S 11 :s 0,081 1

U2(1I) • 0,4506, + 7,'770811 - 121,677 "12 + 1147,71 "II'
- 4289,49 114 •

For ~8:5 "I :!~

;.



U3( 11) .. 0.54067 + 2.33040 11 .. 10.5938 11 2 + 33.2311 ",3

- 61.6051 114 + 65.7088 ~5 - 37,3249 116, + e,71278

,lle 1 •

U4(1I) • 1.

b) Derivative of the basic velocity profile

For I0 ~ 11 • 0,02 •./

U; (11)-(0,105 - 20,086711 + 1657,76 112 .. 65138,9 ",'
+ 990556 ~ 4) • 103 •

7 •

• (0,026765 .. 3,03591 '" + 1b5,621ij 1}2 _ 5040,312~'
+ 9~725,96 ~/ - 9618260 11 5 + 5557002 116

- 1'505490 11) • 103

For ~,.,08:IE 11 S 0,2 .• /

U;rll) • 3.5&967 - 53,670211 + 387,814 11 2
- UOO,45 11 3

+ 1654.66 11 4 •

For jO.2 :Ii 11 :s 1 <./

U.i(11) - 1,34694 - 7,5007911 + 30,3451 112
-.82,3014 "I'

+ 148,4773 11 4 - 169,8662 11 5 + 109,3569 116 - 29,8578 11 7 •

For [] Ii: 1 (/

IU5(1I) • 9,,·1

c) Thrust stress of the turbulent flow

,.

.:,;. ...,.,..
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\'

8(1}) I. (1,4'11.0,230811 • 1,9604 ",2. 1,09'8 11' + 2,1'54 11 4

• 0,2604 11 5) • 10·' •

For I] e·1 .J

d) Dimensionless turbulent apparent viscosity

For [0 S 1) :is 0,2 ,II
r

m1(11) • 0,408'5 112 • ',9185 11' + 14,165 114 • 20,150 ",,5 •

For r0,2 :51} :5 0,95 II
m2( ~) • (0,345391 + 16,1883 11 • 64,0363 1}2 + 198,414 1}3 --- j

• 464,881 4 + 6}1,583 5. 454,88' 6 + 130.5&1 1). 10.3 .

For [0.95:5 11 S 1 I] .~.

e) Derivative of the turbulent apparent viscosity

For 10:! 1) :50.. 2- ,..1

[~~(1) • 0,82525 1) • 12.0374 "11
2~.5380 "11 3 - 101,161 "11 4 ./
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ui2(~1)-:.O,01678-B3 '=--():-1-2-80725 '" + 0,59:~' ",2 -~,~5955~--~}
+ 3,187914 ",4 _ 2,729299 '';'''0,91'966 6.

For \0,95 5 II 5 1'j

m}("'l). 11,5412 - 52 ,8372 "1 + 52,896 1)2 - 17,6 ",3.

A3. The Method of Galerkin

This section describes how the method of Galerkin [16, 17] is applied to

determine eigenvalues and eigenfunctions for linear homogeneous differential

equations with linear homogeneous boundary conditions. In order to explain

the method, it is sufficient to consider a differential equation containing

one independent parameter. Then, by obvious generalization, we obtain a rule

for the treatment of differential equation systems.

thGiven a differential equation of n order

(A3.l)

with n linear homogeneous boundary conditions within an interval [a, b], with

x = x(t). Let S be the independent parameter and K, L be differential operators

of the form

(A3.2)

To determine an approximate solution of the eigenvalue problem,· we first /39

establish a function Ii: i(t;o1,o2'·"'cq)! which for arbitrary values of the
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independent constants c
l

' •.• , cq satisfies all the boundary conditions.

these are linear, as in the present case, then ~ can be chosen as a linear

If

combination of q independent linear functions Xl'

the same boundary conditions:

...... "x-xo-!
Ita1

... , X'which again satisfy
q

(A3.3)

with /X'" (X'" X'" i and c' = (cI ' ••. , cq), where' indicates a transposed- 1'···" q~
matrix.

Let ~' (t) be the defect function which arises if the approximation ~ is

inserted into the left side of (A3.1):

\I[X] + S L [x]. 6 (tl./

For a good approximation, this defect should in a certain sense be the

"smallest possible'~ in the entire intervaL In order to achieve this, we

follow Galerkin, selecting the independent constants cI ' •.. , cq so that variously

weighted means of the defects, integrated over the interval [a"b], vanish. As

the multipliers, we can use the starting functions themselves (or the first q

functions of a complete system). As the operators are linear, there arises in

this way a system of q simultaneous linear homogeneous algebraic equations in

the unknown constants cI ' ••. , cq ' which can be written in matrix form as

follows:

b b

f ... ... ... f ...
L[X]dt)o - 0( XI KlX]dt + S XI

a a

or, briefly

1 (A
...

B) 0 - o'J+ S

34



where A and B are matrices of q columns, and the designation 8 for the parameter

indicates that we are here dealing with approximate values.

Nontrivial solutions of the equation system exist only if det (A + 8 B) = O.

But since A and B are not singular with linear independent starting functions, /40

this yields a polynomial of the qth degree in ~:, the roots of which, 81 , .•• ,8q ,

represent approximations to the desired eigenvalue S. For each § we obtain a

set of constants c1 ' ••• , cq ' which are defined only up to a common factor, and

which, inserted in x approximate the matching eigenfunction.

Ga1erkin's method can be applied quite analogously to the approximation

of eigenvalues and eigenfunctions of a system of r differential equations of

degree ~ n, with corresponding linear homogeneous boundary conditions. Let the

differential equations be summarized in the expression

\KlxJ + S L LxJ • ~I (A3.4)

variables, x' = (xl' ••• , xr ),

elements of which, K.. and
1.J

form (A3.2). If the differenti~lL.. , j = 1,' ••• , r, consist of operators of the
1.J

equations are linear and independent, then either det K j 0 or det L j O.

where x(t) is now the vector of the independent

and K and L indicate matrices of r columns, the

Each of the variables xi' i = 1, ..• , r, is now approximated again by a
A A

linear combination of q linear independent functions XiI' .•• , Xiq which meet

the matching boundary conditions:

with X. = (X.
1

' ..• , i~ ) and c .' = (c1 ., .•. , c .) so that, corresponding
1.. 1. 1.q .1. 1. q1.

to (A3.3), we can make up the formulation
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... I11.- O••••• 0
I

X •
I

• • • • •• • •
°1

0
... I• O• •••• Xr I

(A3.5)

If we insert x into the system, we obtain the defect vector

and the Galerkin equations can be represented formally again as the matrix /41

product

b

( I XI K[X]d~ + 5 I i· L[X)dt) ° • 0

or

a a

with matrices ~and ~ having rq columns. If the equation system is written

out extensively, we obtain from the i th differential equation in particular

the q equations

b
--~~- ..._~-

I .. q

X1k °k1}
q

irk °u] }Xu (111 [ I + ••• + J[tr [ I
a .1 .1

dt +

36

b

S I
a

IL.__._~__

+ - •• + L1r

q

[I
k-1

I

Ok ]) dt. 0 d
r I

I
I

1 • ,.2 •••••J



But this means that the defect ~. in the interval [a,b] of the series is
l.

to be orthogonalized with respect to all the starting functions for x .• Then
l.

every opel;".ator Kij of the differential equation system contributes to the ele-

ments of a q-column submatrix A.. of ~.They can be calculated from
l.J

,---------- ------

The submatrices, which belong to one of the operatorsK.. ~ 0 or L.. ~ 0
l.J l.J

are also not singular here, because the starting functions for each of the

dependent variables x., i = 1, 2, ..• r, are selected linear and independent.
l.

With independent differential equations, therefore, at least one of the matrices

J~~t~~ must be !egular. The approxima~e valites jSy, y =1.~,-.:-=!~g,\ for the

desired eigenvalue S are the roots of the characteristic equation of the matrix

!< _n~ ..;qx )] or, in case det ~ = 0, the reciprocal eigenvalue of ll-1l--1~ >]. /42

The set of rq constants belonging to § provides approximations for the
\, v

eigenfunctions.

A4. The Numerical Solution

To solve the system (4.5) -- i.e., to calculate the smallest eigenvalue

Sl and its eigenfunctions -- the method of Galerkin is used. In the notation

of Section 3 (with r = 3; xl = u; x2 = v, x3 = p) the differential Equations

(4.5) are

K,,[u] + K'2[Y] • 0

K22[vJ ... JCa3 '[p] + s L24~J • 0,..•

K}2lY] .;~'j Ip] • 0 ,

with the operators ~.~~
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and otherwise zero.

Following the ideas in Section 6, we select as the st~rting functions
_J

in which k = 1, 2, "', q; nik is greater than or equal

to zero throughout; r ik is greater than zero.

The boundary conditions u = v = v' = 0 at n = 0 and n + 00 as well as the

relation p(oo) = 0 which follows from (6.1.3) are fulfilled if the exponents

are selected so that n'k ~ " n2lc l: 2, n}k it: 01 Furthermore, we must note that

the starting functions are linear and independent with respect to each of the

variables -- that is, that for any two starting functions, the exponerits of /43

(1 - e-n) or of e-n are different.

Now we set up the Galerkin equations Ie IX + 5~) 0 • 9 by the method

described in Section A3. That is, we introduce the approximations U, v, pinto

the differential equations and orthogonalize the first defect in the interval

(0, 00) of the series according

to v2k , and the third to P3k'

evaluate integrals of the form

to all the starting functions u
lk

' the second

To calculate the elements of ~ and [~ , we must

ir( 1l) (1 ...-" )Il e-r'l d1l '
o

38



where fen) can be one of the coefficient functions D(n), [U'<11-);-MT~~}l and

l~I{", >]. Because IUI(", >. MI { 11) • 01 forl"',e,j, the integration interval

for the corresponding summands reduces ~rom the first to the interval [0, 1].

Both of the other co~fficient functions can b~ r-ep~es~~ted as -!h{1I) • 1 + Re m{"l ~

and~{"I). 1 + (til",) .1)\ with\m(",). ut",--)'",.ol for \1l?!1-\, so that here

again we can divide the integration intb

If we apply the already known polynomial (see A2) to describe the coefficient

functions in the individual segments of [0, 1], we only have expressions which

can be integrated analytically. That is, we have

(A4.l)

To be sure, the complete analytical calculation of the finite portion of the

integral leads to fourfold sums. Since the accuracy with which these sums can'

be evaluated still depends on the exponents nand r, and is otherJ~se very

difficult to review, we have in most cases calculated the integrals numerically

by Simpson's rule.

In comparison, integration over the infinite interval was done analyti­

cally: (A4.l) yields first

and from that there follows

._---------.._---
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Corresponding to the operational notation of the differential equation

system, we can divide the Ga1erkin equations Ie Of. .. s~) c~ as follows:

A11 A12 0

o A22 A2}

o A}2 A"

o 0 0

B
21

0 0

o 0 0

(A4.2)

By multiplication from the left with' r 1 edetOl,l O)J , we can reduce the

eigenvalue problem of the matrix pair Ipt .: »I to

(A4.3)

x..
1.J

nine

and thus to the determination of the eigen-so1utions of \:-Ot~1 ~. Let us

again consider the matrix bt ~11 to be analyzed into q-co1umn submatrices

which we can calculate on the basis of the relation ~~-tl from the

linear equations

I\--f--A-i-k-Xk-j-.-E-i-j--- --i-.j-. 1.2.} 'I
k=1 ,

Because

-------~--

C'
X12

X'5) C0

0) C2

'

2

'

0 0

(1-1 t, • X2, X22 X2} B21 0 0 0o • X22B21

X}1 X
32 x}} 0 , 0 o X}2B21 0 0

it is sufficient to know the submatrices X12
-1 X22 (A22 - A23 ·= -All *\2X22' =

-1 -1 -1·A33A32) and X32 = -A33A32X22·

For the existence of a nontrivial solution vector of (A4.3) , it is

required that
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Ie 41 ·1 ~+ 8.1 l ) . .-~

This provides an algebraic equation of degree 3q' for 5-1 . Due to the structure

of , the characteristic equation breaks up into

1<
".1. ) "S·2q =-n-l

~12B2'1 + S 11 ~

with the 2q-fold zero point §-l = O. The remaining q eigenvalues of ~~.-1_~t

agree with those of -X12B2l •

A-IWe calculate the greatest eigenvalue ~l ' which corresponds to the

desired smallest eigenvalue 8
1

of (A4.2), by the iteration method, iterating

according to the rule

There the initial vector c~~) must have one component of the eigenvector.

The calculation shows that the series of quotients of corresponding compo­

nents of two successive vectors converges, approaching a simple positiveeigen­

value. The normalized vectors themselves approach the matching eigenvector

(V+1 )

c11 5..1 landl
e (v) -

i1

Using the eigenvectors c. l of -X12~2l' we determine the eigenvector c

for the eigenvalue 8-1
of \_« .1~1 from

------------:-----~-----
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The vector c is simultaneously the eigenvector of (A4.2) for the eigen- /46

value S, and the desired eigenfunctions are given by F• u1.~.;J, \;~~~~2.c~~

and Ip-~!3~~~'

A_I
Sl can be calculated with any desired accuracy as the eigenvalue

from -X12B
2l

by the iteration method. The elements of this matrix are, to be

sure, burdened with errors arising in the calculation of matrix X12 from sub­

matrices of ~I. The effect of these errors on the magnitude of the eigenvalue

can be estimated if we compare the results given in performing the calculation

with the same starting functions but with a different sequence of the starting

functions. But it is not possible to state how far the approximations diverge

from the eigen-solutions of (4.5).

All the numerical computations were performed on the Siemens 2002 computer

system in the Computer Center of the Institute for Applied M~thematics of the

University, Freiburg.

8. SUMMARY

In this work it is shown that Taylor-Gortler longitudinal vortices can

occur in a turbulent boundary layer at a concave wall if the curvature of the

wall is large enough.

As in all such investigations, the theorem of vortex instability leads to

an eigenvalue problem from which a critical curvature can be determined for

neutral perturbations (and only these are considered here) at a prescribed

basic flow and for any perturbation wavelength. For a complete description of

the turbulent gasic flow, a profile of the turbulent apparent ~i~Fosity and

the Reynolds number must be prescribed along with the velocity profile.

The eigenvalue problem is solved approximately by the Galerkin method for

a turbulent boundary layer flow described by P. S. Klebanoff. The results
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proved to be strongly dependent on the choice of the starting functions, but

they agree within an order of magnitude. In each approximation, the critical

curvature calculated for a given Reynolds number has a minimum value for a

certain wavelength. It increases for larger and smaller values of the parameter,

with increasing steepness. /47

Finally, the Reynolds number was varied within a certain range, on the

assumption that a suitably plotted basic profile would not change. For the

curves of critical curvature, this gives a slight shift to smaller values of

curvature with increasing Reynolds number.

In conclusion, the experimental results determined by I. Tani are mentioned.

The theoretical studies agree satisfactorily with them.
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